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Astract: The PID control is widely used in various control systems. For the selection of 

controller parameters, the Ziegler-Nichols approach is known at present. However it is 

usually applicable to multistage time-lag plants, and not to the oscillatory plants. The 

CDM (Coefficient Diagram Method) is applicable to any kind of plants. In this paper, 

CDM is applied to the controller design of the multistage time-lag plants, and the results 

are compared with the Ziegler-Nichols approach. 
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

係数図法による PID 制御系の設計 



内容梗概: PID 制御系は現在広く応用されていて、制御器パラメータの選定法には

Ziegler-Nichols の方法が現在知られている。しかしこの方法では制御対象として、

多段時定数回路を想定しており、振動系などには適用できない。係数図法はどのよう

な制御対象の制御器の設計にも適用できる。本報告は PID 制御が対象としている、多

段時定数回路的な制御対象について、係数図法の設計を行い、Ziegler-Nichols の方

法と比較している 

 


1. INTRODUCTION 

 

The PID control is widely used in various control systems. 

The Ziegler-Nichols approach is known at present for the 

controller parameter design, as shown in various control 

textbooks such as the ones by Franklin (1994, p.191), Åstrӧm 

(2008, p.302), or Qiu (2010, p.299, p.304). The history of 

PID control is well described by Babb (1990) and Brickery 

(1990). The PID control was developed mainly for the 

purpose of controlling multistage time-lag plants. Thus it is 

not applicable to other plants such as oscillatory plants. The 

CDM (Coefficient Diagram Method) is developed for the 

control of all kinds of plants, including multistage time-lag 

plants and oscillatory plants (Manabe, 1998, 2002, 2012). In 

order to clarify the nature of PID control, CDM is applied to 

the design of multistage time-lag plants and the results are 

compared with the results obtained by the Ziegler-Nichols 

approach. 

 

The paper is organized as follows. The usual multistage time-

lag plants are represented by a plant consisting of a pure time 

delay and a time-lag. Section 2 discusses the way of 

approximating the pure time-delay by polynomials such that 

CDM design is applicable, because only polynomials are 

used in CDM. In section 3, the method of representing a 

discrete system by a continuous system with a pure time-

delay is discussed. Thus the design of a discrete PID 

controller can be made by the small addition of such a pure 

time-delay to the original plant. In section 4, the CDM 

designs are made for the plant consisting of a pure time-delay 

L and a time-lag T for various L/T ratios, especially for 

1/ or /T L T   . In section 5, these design results are 

compared with results by the Ziegler-Nichols approach. In 

section 6, the results are summarized in conclusions. 

 

2. REPRESENTATION OF TIME DELAY 

 

In order to approximate the pure time-delay, proper 

consideration is necessary. First, the approximation is to be 

easy to handle in CDM design. For this reason, the 

denominator-polynomial type is chosen. Second, the time-

delay, 
Lse

, is to be approximated accurately only up-to 

1/ /secL rad  , which corresponds to 57.296 degrees 

phase shift. This condition is introduced from the finding that 

the usual closed system with time-delay must have an 

integrator with 90 degrees phase shift and also about 40 

degrees phase margin for stability. Thus the contribution of 

the phase shift by the time-delay is limited to 50 degrees at 

the maximum. Third, under this environment, the stability 

condition must be sufficiently accurate. Forth, the step 

response of the closed-loop must be accurate in practical 

sense. 
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To satisfy the first condition, the following approximation is 

suggested. 

3 3 2 2

1 1
.

( ) 0.1 0.5 1

Ls

L

e
A s L s L s Ls

 
  

 (1) 

The second condition is verified by the comparison of the 

frequency responses at 1/ /secL rad  . 

1 57.296 deg,

1/ ( ) 0.97129 60.945 deg.

Ls

L

e

A s

  

 
  (2) 

In order to verify the third condition, the stability conditions 

are compared. For this purpose, the system consisting of a 

time-delay and an integrator is considered. This system is 

most stringent in terms of verifying the approximation, 

because the effect of the time-delay is largest with about 50 

degrees phase shift. The open-loop transfer function of the 

system is shown as follows. 

( ) / /( ( )).Ls

LG s e K s K sA s   (3) 

The stability condition and the oscillation frequency  for 

the exact time-delay system are obtained by making the loop 

gain to 1, while the phase is made as rad 180 deg    for 

s j . 

1.5708/ , /(2 ) 1.5708/ .K L L L     (4) 

The stability condition for the approximated system can be 

obtained from the characteristic polynomial ( )P s of the 

closed-loop system and the condition that ( ) 0P j  . 

3 4 2 3 2

4 3 2

4 3 2 1 0

0.5

2 4 1 3 0 3 1 1 3

( ) 0.1 0.5 ,

,

( / ) ( / ), ( / ) .

P s L s L s Ls s K

a s a s a s a s a

a a a a a a a a a

    

    

  

 (5) 

This leads to the following results. 

1.6/ , 1.4142/ .K L L     (6) 

The comparison of the above results shows that the third 

condition is met.  

 

The system to verify the forth condition consists of a time-

delay and an integrator with 0.4/K L . The close-loop 

response of the exact system ( )W s  is known to have no 

overshoot (Manabe, S., 2003).  

( ) ( ) /(1 ( )) 0.4 /( 0.4).LsW s G s G s Lse     (7) 

For the approximation, ( )W s  is as follows. 

4 4 3 3 2 2( ) 0.4/(0.1 0.5 0.4).W s L s L s L s Ls      (8) 

From the stability indexes, 3 2 1[ ] [2.5 2 2.5]    , it is 

clear that this response has no overshoot. 

 

The responses for 1L   are shown in Fig. 1. They are almost 

equal. 
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Fig. 1. Comparison of responses,       exact,       approximate 

3. REPRESENTATION OF SAMPLED-DATA SYSTEM 

 

In ordinary PID control, the controller is the discrete 

sampled-data system, while the plant is the continuous 

system. In order to analyze the total system, the discrete 

sampled-data controller has to be approximated by the 

continuous system with some equivalent time-delay. Such 

equivalent time-delay is about 0.5~1.5 times of the sampling 

period 
sT , depending on the input function and controller 

function, as shown in the following three examples.  

 

The first example is the case, when the controller transfer 

function is unity, ( ) 1cG s  , and the input function is a ramp 

function, ( )x t t . In this case the equivalent time-delay is 

1.5 sT , as shown in Fig. 2. The relation is shown in the 

following equation. 
1.5

( ) 1.5 ( 1.5 ) ( ).sT s

out s sy t t T x t T e x t


      (9) 

The analog input ( )x t t is converted to digital signal and 

stored as a digital data. The data is processed according to the 

specified transfer function and converted to analog signal at 

the next sampling time. The analog signal is held until to the 

next sampling time by the sample-hold devise, as 

( ) ( )sy t x t T  . The equivalent analog output is further 

delayed by 0.5 sT  as the average of the step-wise ( )y t  with 

the result 
1.5

( ) ( )sT s

outy t e x t


 . 
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Fig. 2. Input-output relation, ( ) 1cG s   

 

The second example is the case, when ( ) 1/cG s s with Euler 

integration formulae and the input function is a ramp 

function, ( )x t t . In this case the equivalent time-delay is 

sT . The Euler integration formulae is as follows. 

( ) (( 1) ) (( 1) ).s s s sy nT y n T T x n T      (10) 

This equation can be rewritten as 

[ (( 0.5) 0.5 ) (( 0.5) 0.5 )]/

(( 0.5) 0.5 ).

s s s s s

s s

y n T T y n T T T

x n T T

    

  
 (11) 

The left hand term can be approximated as (( 0.5) )ssy n T . 

By replacement of ( 0.5) sn T t  , the next relation is 

obtained. 

( ) ( 0.5 ).ssy t x t T      (12) 

The averaged output is further delayed by 0.5 sT  and the final 

result is as follows. 

( ) (1/ ) ( ).sT s

outy t s e x t


    (13) 

The third example is the case when the advancing modified 



 

 

3 

 

 

Euler integration formula is used in the second example. In 

this case the equivalent time-delay is 0.5 sT . The advancing 

modified Euler integration formula is as follows. 

( ) (( 1) )

[1.5 (( 1) ) 0.5 (( 2) )].

s s

s s s

y nT y n T

T x n T x n T

 

   
 (14) 

This equation can be rewritten as  

[ (( 0.5) 0.5 ) (( 0.5) 0.5 )] /

1.5 (( 1) ) 0.5 (( 2) )

(( 0.5) 0.5 )

0.5[ (( 1) (( 2) )].

s s s s s

s s

s s

s s

y n T T y n T T T

x n T x n T

x n T T

x n T x n T

    

   

  

   

 (15) 

The second term of the right hand side can be further 

modified as follows. 

0.5[ (( 1) (( 2) )]

0.5 [ (( 1.5 0.5) ) (( 1.5 0.5) )] /

0.5 (( 1.5) ). (16)

s s

s s s s

s s

x n T x n T

T x n T x n T T

T sx n T

  

     



 

Then Eq. (16) becomes, by the use of ( 0.5) sn T t  , as 

follows. 

0.5 0.5

( ) (1/ )[ ( 0.5 ) 0.5 ( )]

(1/ ) [1 0.5 ] ( ).s s

s s s

T s T s

s

y t s x t T T sx t T

s e T se x t
 

   

 
  (17) 

For ( )x t t , ( )y t  becomes (1/ ) ( )s x t . Thus 

0.5
( ) (1/ ) ( ).sT s

outy t s e x t


    (18) 

The system time delay is the sum of (0.5 ~ 1.5) sT  and the 

original time delay L . Because of
sT L , the effect of 

sampling can be usually neglected. 

 

 

4. CDM DESIGN 

 

4.1 Design Procedure 

The block diagram of the control system is shown in Fig. 3 in 

the standard CDM expression. The plant is given as follows. 

3 3 2 2

3 4 2 3

2

( )
( )

( ) 1

,
( )( 1) ( )( 1/ )

( ) 0.1 0.5 1, / ,

( ) 0.1 0.5 (1 0.2 / )

(1 0.5 / ) (1 / ) 1/ ,

( ) .

p Ls

p

p

L L

L

p

p

B s K
G s e

A s Ts

K R

A s Ts A s s T

A s L s L s Ls R K T

A s L s L L T s

L L T s L T s T

B s R

 



 

    

  

    



 (19) 
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Fig. 3. Block diagram of control system in CDM  

 

The controller is assumed as a PI controller. This assumption 

will be validated by the design results. 

1 0( )
( ) .

( )

c

c

c

B s k s k
G s

A s s


     (20) 

The characteristic polynomial is obtained as follows. 
5

0

3 2

5 4

3 2

1 1 0 0

( ) ( ) ( ) ( ) ( ) ,

0.1 , 0.5 (1 0.2 / ),

(1 0.5 / ), 1 / ,

1/ , .

i

c p c p i

i

P s A s A s B s B s a s

a L a L L T

a L L T a L T

a T Rk a Rk



  

  

   

  



 (21) 

Design is made for 
2 12, 2.5   . The second order 

equivalent time constant 
2  is obtained from the plant 

parameters. Thus the equivalent time constant is obtained as 

follows. 

3

2 1 2 2

2

2 1 2

(1 05 / )
, ,

1 /

5 (1 0.5 / )
.

1 /

a L L T

a L T

L L T

L T

   

   


  




 



  (22) 

For / 0L T  , values of 
2 1, , and   are , 2 , and 5L L L

respectively. Controller parameters are obtained in the 

following manner. 
2

2

1

1

3

1

0 2 2

1

1

3

0

0 2 2

0.5(1 / )
,

(1 0.5 / )

0.1(1 / )
,

(1 0.5 / )

1/ 0.5
,

(1 0.5 / )

0.1(1 / )
.

(1 0.5 / )

a L T
a

L L T

a L T
a

L L T

a T
k

R RL L T

a L T
k

R RL L T






 




 




 




 



  (23) 

In usual cases, / 0L T   is satisfied. Then the above results 

become as follows.. 
2

1 0

2

1 0

0.5 / , 0.1/ ,

0.5 /( ), 0.1/( ).

a L a L

k RL k RL

 

 
  (24) 

For these design, the hand calculation can be systematically 

carried out by filling the CDM form as shown in Fig. 4, when 

plant parameters are given in concrete numbers. 

 

4.2 Design Results 

Design can be made by more simpler manner with the use of 

gc command of CDM-CAD (Manabe, 2012), where 

controller parameters are automatically calculated when the 

equivalent time constant  is given. The command line, for 

1,1/ 0R L T   , is as follows. 

RR=1;L=1;Tinv=0;aL=[0.1*L^3 0.5*L^2 1 1]; 

ap=[conv(aL,[1 Tinv]) 0];bp=RR;nc=0;mc=1;gr=[2 2 2 

2.5]; t=5*L*(1+0.5*L*Tinv)/(1+L*Tinv);tm=0.5;gc 

In the above, the integrator of the controller is moved to the 

plant. Thus the order of controller denominator 
cn is 0, while 

that of the numerator
cm is 1. The gr is the reference stability 

indexes. Because the design freedom is two, 
1 0andk k , only 

1 and 2 take the reference values, and other indexes, 3 and

4 , have to be accepted as the results of design. The tm is the 
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time scale of the step response, and usually takes the value 

0.5 or 1.  

 

The design results for 1,1/ 0R L T     are as follows. 

4 3 2

0.5 0.1 1
( ) ( ) ( ) ,

0.1 0.5
c p

s
G s G s G s

s s s s s


 

  
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Fig. 4.  Coefficient diagram, CDM, 1,1/ 0R L T    
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Fig. 5. Responses, CDM, 1,1/ 0R L T    

5 4 3 2( ) 0.1 0.5 0.5 0.1,

[2.5 2 2 2.5], 5,

1, 1, 1, 1, 1,

38.319 deg, 2.7778.

i

i

m m

P s s s s s s

s

g

 



     

 

     

 

  (25) 

The , , andi m ms g  are closed-loop poles, phase margin and 

gain margin respectively. The coefficient diagram with 

related Bode diagram is shown in Fig. 4. The responses are 

shown in Fig. 5. The ( ), ( ), and ( )G s S s T s  are open-loop 

transfer function, sensitivity function, and complementary 

sensitivity function respectively, and ( )W s  is the transfer 

function for the command following characteristics, where 

the reference numerator ( )aB s  is 
0k . From values of the high 

order stability indexes, 
4 2.5  and 

3 2  , it will be 

concluded that PI controller suffices. 

 

 

5. COMPARISON WITH ZIEGLER-NICHOLS 

APPROACHES 

 

The CDM design results are obtained as in Eq. (23). For 

/ 0L T  , they become as follows. 
2

1 00.5/( ), 0.1/( ).k RL k RL     (26) 

The above is the case for PI controller. For P controller, the 

results are as follows.  

1 00.4 /( ), 0.k RL k      (27) 

The results are obtained by making 
2 2.5   and 

1    in 

Eqs. (22)(23)(24). 

 

There are two methods in Ziegler-Nichols approaches. The 

first method, Quarter Decay Ratio (QDR), is based on the 

condition that the amplitude decay in one cycle of oscillation 

is about 0.25 in P control. The results are as follows. 

1
( ) (1 ),

0.9 /( ), / 0.3, for PI control,

1/( ), , for P control.

c P

I

P I

P I

G s K
T s

K RL T L

K RL T

 

 

  

 (28) 

These values are converted to CDM parameters as follows. 

1

2

0

1 0

0.9 /( ),

/ 0.27 /( ), for PI control,

1/( ), 0, for P control.

P

P I

k K RL

k K T RL

k RL k

 

 

 

  (29) 

 

The second method, Marginally Stable System (MSS), is 

based on the stability limit at P control. 

0.45 , /1.2, for PI control,

0.5 , , for P control.

P U I U

P U I

K K T P

K K T

 

  

 (30) 

The characteristic polynomial for P control with 1/ 0T   is 

given as follows. 
3 4 2 3 2( ) 0.1 0.5 .UP s L s L s Ls s RK       (31) 

The stability condition for fourth order polynomial is as 

follows. 

2 4 1 3 0 3 1( / ) ( / ).a a a a a a a     (32) 

From this condition the following results are obtained. 

1 31.6 /( ), 2 / 2 / / 2 .U U UK RL P a a L        (33) 
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These values are converted to CDM parameters as follows. 

1

2

0

1 0

0.45 0.72 /( ),

0.72 /( )
/ 0.19447 /( ), for PI control,

2 /1.2

0.8 /( ), 0, for P control.

P U

P I

k K K RL

RL
k K T RL

L

k RL k



  

  

 

(34) 

 

QDR design results for 1,1/ 0R L T    are as follows. 

4 3 2

5 4 3 2

0.9 0.27 1
( ) ( ) ( ) ,

0.1 0.5

( ) 0.1 0.5 0.9 0.27, (35)

[2.5 2 1.1111 3], 3.3333,

2.1205 1.0154, 0.16008 1.0427, 0.4389,

16.046 deg, 1.4084.

c p
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m m

s
G s G s G s

s s s s s

P s s s s s s

s j j

g

 




 

  

     

 

     

 

The coefficient diagram is shown in Fig. 6. The responses are 

shown in Fig. 7. 

 

MSS design results for 1,1/ 0R L T   are as follows. 
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shown in Fig. 9. 

 

The step responses for P control are shown in Fig. 10, where  

1,1/ 0R L T   , and P gains are 
1 0.4CDMk  , 1 1QDRk  , 

and 
1 0.8MSSk   as in Eqs. (27)(29)(34). From Fig. 10, QDR 

shows about 0.25 decay in one cycle. Compared with CDM, 

P gain of QDR is 2.5 times, and that of MSS is 2 times 

higher. Thus QDR and MSS are more oscillatory compared 

with CDM. This also roughly applies to PI control cases as 

evidenced in Eqs. (26)(29)(34). Step responses of 

complementary sensitivity functions are shown in Fig. 11. 

The QDR and MSS show longer settling time compared with 

CDM. Thus there is no justification of such gain increase. 

 

 

6. CONCLUSIONS 

 

The important conclusions are summarized as follows. 

(1) The time delay can be approximated by a denominator 

polynomial, as shown below. 
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(2) The discrete sampled-data system is approximated by the 

continuous system with equivalent time-delay of 0.5~1.5 

times of the sampling time sT . Because sT L , the 

time-delay can be usually neglected. 

(3) CDM design of PI control gives satisfactory results with 

no oscillation in the step response. The PID control is 

not necessary for such multistage time-lag plants. The P 

control is usually not recommended, because it lacks the 

disturbance rejection capability. 

(4) Compared with CDM, QDR gains are roughly 2.5 times, 

and MSS gains are 2 times higher. They show oscillation 

in step responses as intended in the design purpose of 

quarter-decay-ratio. Because their settling times are 

longer, there is no justification of such gain increase. 
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Fig. 8. Coefficient diagram, MSS, 1,1/ 0R L T    
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